Атомный номер московий: Московий – Периодическая Таблица

Московий

115

Московий

Mc

(288)

5f146d107s27p3

Московий (лат. Moscovium, Mc), ранее был известен под временными названиями унунпентий (лат. Ununpentium, Uup) или эка-висмут — химический элемент пятнадцатой группы (по устаревшей классификации — главной подгруппы пятой группы), седьмого периода периодической системы химических элементов, атомный номер — 115, наиболее стабильным является нуклид 289Mc (период полураспада оценивается в 156 мс), атомная масса этого нуклида равна 289,194(6) а. е. м.. Искусственно синтезированный радиоактивный элемент, в природе не встречается.

Содержание

  • 1 Название
  • 2 История открытия
  • 3 Получение
  • 4 Физические свойства
  • 5 Химические свойства
  • 6 Известные изотопы

Название

Первоначально для 115-го элемента использовалось систематическое название унунпентий, составленное из корней латинских числительных, соответствующих порядковому номеру: Ununpentium — дословно «одно-одно-пятый»).

8 июня 2016 года ИЮПАК рекомендовал дать элементу название «московий» (Moscovium, Mc) в честь Московской области, где находится Объединённый институт ядерных исследований (Дубна). Название «московий» было представлено научной общественности для 5-месячного обсуждения с 8 июня по 8 ноября 2016 года. 28 ноября 2016 года ИЮПАК утвердил для 115-го элемента название «московий».

История открытия

В феврале 2004 года были опубликованы результаты экспериментов, проводившихся с 14 июля по 10 августа 2003 года, в результате которых был получен 115-й элемент. Исследования проводились в Объединённом институте ядерных исследований (Дубна, Россия) на циклотроне У-400 c использованием дубненского газонаполненного разделителя ядер отдачи (ДГРЯО) совместно с Ливерморской национальной лабораторией (США). В этих экспериментах в результате бомбардировки мишени из америция-243 ионами кальция-48 были синтезированы изотопы элемента 115: три ядра 288Mc и одно ядро 287Mc. Все четыре ядра в результате альфа-распада превратились в изотопы элемента 113. Цепочка последовательных альфа-распадов привела в результате к спонтанно делящимся ядрам элемента 105 (дубний).

В 2004 и 2005 годах в ОИЯИ (совместно с Ливерморской национальной лабораторией) были проведены эксперименты по химической идентификации конечного продукта распада цепочки 288115 → 284113 → 280111 → 276109 → 272107 → 268105, долгоживущего (около 28 часов) изотопа 268Db. Эксперименты, в которых было исследовано ещё 20 событий, подтвердили синтез 115-го и 113-го элементов.

В 2010—2011 годах учёными ОИЯИ была увеличена эффективность генерации 115-го элемента в реакции америция-243 и кальция-48, а также впервые напрямую получен изотоп 289Mc (ранее он наблюдался только как результат радиоактивного распада 117-го элемента).

В 2013 году международная группа ученых во главе с физиками из Лундского университета (Швеция) подтвердила существование изотопа 288Mc. Эксперимент по бомбардировке тонкой плёнки америция ионами кальция был проведен в Институте тяжёлых ионов имени Гельмгольца, GSI (Дармштадт, Германия). В результате удалось произвести 30 атомов Mc. Энергии регистрируемых фотонов соответствовали значениям энергий характеристического рентгеновского излучения, ожидаемым при альфа-распаде данного элемента. Результаты подтвердили прежние измерения, выполненные в ОИЯИ. В 2015 году такой же синтез успешно повторили в Национальной лаборатории имени Лоуренса в Беркли, получив 46 атомов 288Mc.

В августе 2015 года на съезде IUPAC в Пусане было объявлено, что рабочая группа уже подготовила доклад об элементах под номерами 113, 115, 117 и 118.

30 декабря 2015 года ИЮПАК официально признал открытие 115-го элемента и приоритет в этом учёных из ОИЯИ и Ливерморской национальной лаборатории. При этом рабочая группа ИЮПАК указала, что достоверные результаты, подтверждающие открытие московия, были получены только в экспериментах, проведённых в ОИЯИ в 2010 году, несмотря на то, что данные 2010 года полностью подтверждали результаты синтеза в 2003 году.

Получение

Изотопы московия были получены в результате ядерных реакций:

 Am95243 + Ca2048 ⟶ Mc115289 + 2n01
 Am95243 + Ca2048 ⟶ Mc115288 + 3n01
 Am95243 + Ca2048 ⟶ Mc115287 + 4n01

Физические свойства

Предполагается, что московий — непереходный металл, похожий на висмут. Плотность его ожидается на уровне 13,5 г/см3, что выше плотности свинца и несколько меньше плотности ртути. Расчётная температура плавления московия ожидается около 400 °C, то есть он должен быть несколько менее легкоплавким, чем висмут. Московий номинально принадлежит к подгруппе азота (пниктогены) и, вероятно, является вторым металлом в ней после висмута.

Химические свойства

В отличие от более лёгких элементов, которые проявляют в той или иной степени окислительные свойства, которые ослабевают от азота к висмуту, московий химически ожидается похожим больше не на более лёгкие аналоги своей подгруппы, а на щелочные металлы, в этом плане проявляя сходство с таллием. Причина этого кроется в том, что московий в степени окисления +1 приобретёт электронную конфигурацию флеровия, которая является чрезвычайно устойчивой, а одновалентный катион Mc+ будет очень стабильным.

Образование такого катиона приведёт к появлению устойчивой стабилизирующей 7p2
1/2-подоболочки валентных электронов.

Так же как щелочные металлы, московий будет иметь очень низкую энергию ионизации первого электрона, которая составит 538 кДж/моль, что почти равно энергии ионизации лития и немного больше аналогичных значений для натрия. Осно́вные свойства усилит очень большой размер катиона, что сделает McOH сильной щёлочью, подобной NaOH или KOH.

Московий будет быстро окисляться на воздухе кислородом или азотом, бурно реагировать с водой с выделением водорода и образовывать прочную ионную связь с галогенами.

Другой степенью окисления московия является +3. Она предполагается также весьма устойчивой и будет похожа на соли висмута в степени окисления +3, но проявлять он сможет её только в относительно жёстких условиях (при высоких температурах с кислородом или другими галогенами), с некоторыми сильными кислотами.

В отличие от более лёгких элементов, московий, как ожидается, не будет проявлять окислительных свойств, что сделает невозможным его степень окисления −3. Причина этого кроется в том, что присоединение трёх электронов энергетически очень невыгодно основной 7p-подоболочке, и московий, как ожидается, будет проявлять только восстановительные свойства. Степень окисления +5 (высшая возможная для всех элементов, начиная с азота) будет также невозможна по причине очень стабильной электронной пары 7s2, на распаривание которой будет требоваться слишком большое количество энергии. Как следствие, +1 и +3 будут единственными двумя возможными степенями окисления московия.

Известные изотопы

ИзотопМассаПериод полураспадаТип распадаЧисло зарегистрированных событий
287Mc28732+155
−14 мс
α-распад в 283Nh1
288Mc28887+105
−30 мс
α-распад в 284Nh23
289Mc289156 мсα-распад в 285Nh1

Почему «московий» и «оганесон» устроили раскол между физиками и химиками?

В 2015 году открыли четыре новых элемента периодической таблицы — нихоний, московий, теннессин и оганесон. Три из них получены российскими физиками-ядерщиками из Объединенного института ядерных исследований в Дубне. Спустя три года споры об этих элементах не утихают. Физики из Лундского университета не верят в доказательства коллег из России и требуют исключить их элементы из таблицы. А между союзом химиков и физиков началась «война» за право руководить открытием новых элементов. «Хайтек» адаптировал и дополнил статью Nature и выяснил, что не так с элементами российских физиков-ядерщиков, и почему к ним столько вопросов.

Читайте «Хайтек» в

«Они просто топнули ногами и ушли»

Когда химики и физики собрались на симпозиум в мае 2016 года, атмосфера в замке Бэккаскуг на юге Швеции царила оптимистичная. Нобелевский фонд спонсировал эту встречу. Исследователи делились друг с другом своими достижениями в ядерной физике. Но главный повод для встречи — это торжество по случаю добавления в периодическую систему четырех новых химических элементов, открытых за несколько месяцев до этого. Названия новых элементов объявили через несколько дней после симпозиума. А приглашение на церемонию стало огромной честью для исследователей и стран, принимавших участие в открытии.

Хотя многие на встрече были в восторге от успехов ядерной физики, ощущалось и беспокойство. Ученые опасались, что в процессе анализа новых элементов обнаружат их неисследованные свойства. Тогда все выкладки исследователей просто не оправдаются. Главная претензия касалась наиболее противоречивых элементов, под номерами 115 и 117. По мнению экспертов, исследователи не предоставили достаточно доказательств к своему открытию. Важно сделать это правильно, чтобы сохранить ​​научную целостность периодической системы элементов.

К концу встречи один ученый попросил проголосовать, следует ли объявлять названия этих элементов, как и планировалось. Результаты голосования показали глубину беспокойства среди научного сообщества. Большинство исследователей проголосовали за то, чтобы отложить это заявление, говорит Уолтер Лавленд, химик-ядерщик из Университета штата Орегон в Корваллисе. Это вызвало бурную реакцию со стороны российских ученых, которые участвовали в «появлении на свет» трех новых элементов.

«Они просто топнули ногами и ушли», — говорит Лавленд. «Я никогда не видел этого на научной встрече».

«Мы не верим, мы хотим увидеть доказательства»

Несмотря на голосование и опасения ученых, имена элементов были объявлены вскоре после симпозиума. Нихоний (атомный номер 113), московий (115), теннессин (117) и оганесон (118) присоединились к 114 ранее обнаруженным элементам в качестве постоянных дополнений в периодической таблице. Через 150 лет после того, как Дмитрий Менделеев положил начало этой структуре элементов, седьмую строку таблицы официально заполнили полностью.

Некоторые исследователи все же расстроились из-за скоропалительного решения симпозиума. Клаус Фахландер, физик-ядерщик из Лундского Университета в Швеции, считает, что экспериментальные результаты в итоге подтвердят свойства московия и теннессина. Но Фахландер уверен, что элементы утверждены «преждевременно». «Мы ученые, — говорит он. «Мы не верим, мы хотим увидеть доказательства»



Физики vs. Химики

2019 год объявлен Международным годом периодической таблицы. Поэтому дебаты по четырем элементам и дополнительную проверку решили отложить. Но спор привел к неопределенности в нижнем ряду элементов. Возможно, научные руководящие институты пересмотрят некоторые из последних открытий.

Часть разногласий связана с расколом между химиками и физиками. Они спорят, кто должен быть законным хранителем периодической таблицы. Химики исторически занимали эту роль, потому что именно они несколько столетий открывали естественные элементы с помощью химических методов

Но за последние десятилетия физики-ядерщики буквально вели охоту за новыми элементами, создавали их искусственно, прицельно разбивая атомные ядра. Ученые тратили годы на то, чтобы произвести только один атом этих сверхтяжелых элементов. Они крайне нестабильны, а расщепляются на радиоактивные фракции за доли секунды. Поскольку каждая группа ученых стремилась стать первой, ученому совету трудно установливать доказательства их открытий.

Группа российских и американских исследователей произвела бомбардировку берклия (атомный номер 97) частицами кальция-48 (атомный номер 20), ускоренными циклотроном. В результате ядерной реакции был синтезирован теннессин (117). Сам теннессин распадается на более мелкие радиоактивные химические элементы.



Забыли согласовать с физиками

Добавить новый элемент в таблицу или нет решают две организации: Международный союз чистой и прикладной химии (IUPAC) и Международный союз чистой и прикладной физики (IUPAP). Свои решения они с 1999 года принимают на основе заключения группы экспертов, известной как совместная рабочая группа (JWP) под председательством Пауэля Кэрола, химика-ядерщика и почетного профессора Университета Карнеги Меллона в Питтсбурге, штат Пенсильвания. Они собираются для оценки открытий в области химии и физики. Последний раз комиссия JWP заседала в 2012 году, а в 2016 году ее расформировали. Она состояла из Кэрола и еще четырех физиков

Перед закрытием JWP подтвердила открытие элементов — 115, 117 и 118, возникших в ходе российско-американских исследований под руководством почетного физика-ядерщика Юрия Оганесяна из Объединенного института ядерных исследований (ОИЯИ) в российском наукограде Дубна. Открытие 113-го элемента закрепили за исследователями из Токийского Института физико-химических исследований RIKEN.

Решение о признании новых элементов JWP объявила 30 декабря 2015 года. IUPAC выпустил пресс-релиз с основными аспектами открытия четырех новых элементов, тогда еще не получивших имен. Представители союза подчеркнули, что опубликовали свое решение крайне оперативно. Фактически, они сделали объявление до того, как исполнительный комитет IUPAC утвердил выводы JWP.

Выводы по новым элементам даже не согласовали с физиками, хотя в IUPAP ждали их, утверждает Брюс Mаккелар из Университета Мельбурна в Австралии, президент IUPAP в то время

Кто хранит таблицу химических элементов

Непростые отношения между двумя союзами ученых из-за этого конфуза испортились еще больше. Сесилия Ярлског, физик из Университета Лунда и президент IUPAP до Маккеллара, считает, что много лет химики несправедливо руководили оценкой открытий (Кэрол в разговоре с Nature упомянул, что при подготовке отчетов JWP он больше полагался на решения IUPAC). О своем разочаровании Ярлског заявила на шведском симпозиуме в 2016 году. Она обвинила IUPAC в попытке перетянуть все внимание на себя, объявив об открытии самостоятельно. Только физики «компетентны» оценивать подобные открытия, уверена Ярлског.

Ситуацию усугубила критика в адрес JWP. JWP поддержала выводы команды исследователей о свойствах элементов 115 и 117. Цепи радиоактивного распада из элементов 115 и 117 полностью совпадают с заявленными, что доказывает оба открытия. Но анализ «перекрестной бомбардировки» труднодоказуем для элементов с нечетными номерами. Фахландер и его коллеги из Университета Лунда утверждали, что метод российских ученых недостоверен для 115 и 117 элементов. Обвинения стали поводом для расследования вокруг деятельности JWP в феврале 2015 года

Член комиссии Роберт Барбер, физик-ядерщик из Университета Манитобы в Виннипеге, Канада, рассказал, что он и его коллеги «очень беспокоились» о полноте исследования методом перекрестной бомбардировки. Но они пришли к выводу, что альтернативы этому типу доказательств нет, и достигли консенсуса по всем заявленным решениям.

Лавленд поддерживает выбор большинства. И даже если JWP приняло не совсем корректные решения, говорит он, решения группы вряд ли отменят

Решения правильные, но приняты непрофессиональными экспертами

Физик-ядерщик из Дубны Владимир Утенков не согласен с позицией JWP. Аргументы группы из Университета Лунда о методе перекрестной бомбардировки ученый не признает. Он уверен, что российско-американские исследования имеют под собой вескую доказательную базу. Но, как утверждает Утенков, когда группа JWP принимала решение о новых элементах, в ней не было «высококвалифицированных» экспертов по синтезу тяжелых элементов. А в ее докладах содержится множество ошибок

Кэрол защищает работу, выполненную JWP. Он заявил, что они пытались соблюдать критерии, регулирующие оценку открытий. Кэрол заявил: «Я считаю, что комитет был более чем удовлетворен своим докладом».

Но большинство ученых на встрече в 2016 году в Швеции критично относились к JWP. Дэвид Хинде, физик-ядерщик из Австралийского национального университета в Канберре, опросил около 50 исследователей: считают ли они, что выводы группы были «научно удовлетворительными». В итоге он получил очень мало положительных ответов на этот вопрос.

Кого считать судьями

Несмотря на проблемы, IUPAC и IUPAР продолжили сотрудничество и совместно объявили названия четырех новых элементов. Маккеллар признается, что сомневался в решении союзов. Но большинство физиков и химиков, с которыми консультировался ученый, назвали общие выводы JWP достаточно осмысленными. Хотя к деталям доклада есть вопросы.

Ян Редейк, президент отдела неорганической химии IUPAC, пояснил, что объявление об открытии специально сделали раньше, чтобы избежать утечек в прессу и сделать именно лаборатории-претенденты ньюсмейкерами. Чтобы это сделать, по словам Редейка, он максимально быстро одобрил выводы JWP в декабре 2015 года от имени своего подразделения после того, как результаты исследования опубликовали в журнале «Чистая и прикладная химия» (Pure and Applied Chemistry — «Хайтек») IUPAC. «Комиссия сработала должным образом, поэтому я согласился менее чем через час», — утверждает химик

Но до сих пор нет доказательств, действительно ли выводы JWP получили независимую оценку специалистов. По словам исполнительного директора союза химиков Линн Соби, работа JWP прошла два этапа рассмотрения до публикации. Аналогичные результаты были получены в нескольких лабораториях, причем одна из них сама участвовала в открытиях. Затем отчеты JWP отправили членам комитета химического союза по терминологии, номенклатуре и символам.

Соби рассказала, что работа комитета заключалась в проверке ошибок в формулировке и форматировании. А научный контроль проводили сами лаборатории, потому что они являются экспертами в этой области. Правда, Утенков изначально считал, что для проведения научного обзора привлекли 15 независимых экспертов. А в итоге ему и еще двум коллегам из Дубны выдали отчеты для проверки фактов и цифр.

«Я не знаю, как нас можно считать независимыми судьями», — говорит он

Новые правила

После такого неприятного опыта, Ярлског хочет, чтобы физики пристально следили за оценками открытий, за объективностью в выводах JWP. «Меня будут мучать ночные кошмары о нашей небрежности», — уверяет Ярлског.

Для решения возникших проблем оба союза договорились о новых правилах оценки любых будущих элементов. Согласно правилам, выпущенным в мае 2018 года, президенты IUPAC и IUPAP будут изучать результаты JWP, прежде чем совместно сообщать о своих выводах Для этого они будут проводить независимый процесс рецензирования вместе с журналом «Чистая и прикладная химия».

Маккеллар уверен, что изменения положительно скажутся на отношениях между научными сообществами. «Оба союза хорошо себя проявили в совместной работе над преобразованием», — говорит он.

Но этих изменений недостаточно для некоторых критиков, таких как Ярлског. «Я просто не думаю, что новые правила что-либо изменят», — заключает она

Moscovium – информация об элементе, свойства и использование

Перейти к основному содержанию

У вас не включен JavaScript. Пожалуйста, включите JavaScript, чтобы получить доступ ко всем функциям сайта.

Переехать в Ливермориум >

Группа 15 Температура плавления Неизвестный
Период
7 Температура кипения Неизвестный
Блок п Плотность (г см −3 ) Неизвестный
Атомный номер 115 Относительная атомная масса [289]
Состояние при 20°С Твердый
Ключевые изотопы
289 Мк
Электронная конфигурация [Rn] 5f 1 4 6d 1 0 7s 2 7p 3 Номер КАС 54085-64-2
ChemSpider ID
ChemSpider — бесплатная база данных химической структуры.

Изображение отражает название элемента, поскольку в нем используются абстрактные детали традиционной архитектуры Московской области, включающие как формы купола-луковицы, так и другие архитектурные особенности. На изображении также присутствуют абстрактные следы частиц.

Высокорадиоактивный металл, из которого когда-либо было сделано всего несколько атомов.

В настоящее время он используется только в исследованиях.

У него нет известной биологической роли.

Неизвестный

История элементов и периодической таблицы

IUPAC подтвердил открытие (учеными из Объединенного института ядерных исследований в Дубне, Россия, Ливерморской национальной лаборатории им. Лоуренса в Калифорнии, США и Ок-Риджской национальной лаборатории в Теннесси, США) в 2015 году. Эта запись будет обновлена, когда появится больше информации. доступен.

Атомный радиус, несвязанный (Å) Неизвестный Ковалентный радиус (Å) 1,62
Сродство к электрону (кДж моль −1 ) Неизвестный Электроотрицательность
(шкала Полинга)
Неизвестный
Энергии ионизации
(кДж моль −1 )

Общие степени окисления
Неизвестный
Изотопы Изотоп Атомная масса Естественное изобилие (%)
Период полураспада
Режим распада
288 Мк 288,193 ~ 0,09 с α
289 Мк 289,194

Удельная теплоемкость
(Дж кг -1 К -1 )
Неизвестный Модуль Юнга (ГПа) Неизвестный
Модуль сдвига (ГПа) Неизвестный Объемный модуль (ГПа) Неизвестный
Давление пара
Температура (К)
400 600 800 1000 1200 1400 1600 1800 2000 г. 2200 2400
Давление (Па)

Нажмите здесь, чтобы просмотреть видео о  Moscovium

Learn Chemistry: ваш единственный путь к сотням бесплатных учебных ресурсов по химии.

Изображения и видео Visual Elements
© Murray Robertson 1998-2017.

 

Data
W. M. Haynes, ed., CRC Handbook of Chemistry and Physics , CRC Press/Taylor and Francis, Boca Raton, FL, 95th Edition, Internet Version 2015, по состоянию на декабрь 2014 г. Таблица
903 & Chemical Constants, Kaye & Laby Online, 16-е издание, 1995 г. Версия 1.0 (2005 г.), по состоянию на декабрь 2014 г.
Дж. С. Курси, Д. Дж. Шваб, Дж. Дж. Цай и Р. А. Драгосет, Атомные веса и изотопные композиции (версия 4.1) , 2015 г., Национальный институт стандартов и технологий, Гейтерсберг, Мэриленд, по состоянию на ноябрь 2016 г.
TL Cottrell, The Strengths of Chemical Bonds , Butterworth, London, 1954.

 

Использование и свойства

John Emsley, Nature’s Building Blocks: An AZ Guide to the Elements , Oxford University Press, New York, 2nd, New York, 2nd. Издание 2011 г.
Национальный ускорительный центр Томаса Джефферсона — Управление научного образования, It’s Elemental — The Periodic Table of Elements, по состоянию на декабрь 2014 г.
Периодическая таблица видео, по состоянию на декабрь 2014 г.

 

Данные о рисках снабжения

Частично получены из материалов, предоставленных Британской геологической службой © NERC.

Исторический текст

Элементы 1-112, 114, 116 и 117 © Джон Эмсли 2012. Элементы 113, 115, 117 и 118 © Королевское общество химии 2017.

Podccasts

, созданные в здравых науках


. .

 

Периодическая таблица видео

Создано видеожурналистом Брэди Хараном, работающим с химиками Ноттингемского университета.

Загрузите наше бесплатное приложение Периодической таблицы для мобильных телефонов и планшетов.

Исследуйте все элементы

 

Московий (Mc) – Химические свойства, влияние на здоровье человека и окружающую среду

  1. Home
  2. Periodic table
  3. Elements
  4. Moscovium

Chemical properties of Moscovium – Health effects of Moscovium – Environmental effects of Moscovium

Atomic number 115
Atomic mass неизвестно
Электроотрицательность по Полингу неизвестно
Density unknown
Melting point unknown
Boiling point unknown
Vanderwaals radius unknown
Ionic radius неизвестно
Изотопы неизвестно
Открыто Ученые из Объединенного института ядерных исследований в Дубне, Россия, и Ливерморской национальной лаборатории им. Лоуренса в Калифорнии в 2003 г. временный символ Mc и имеет атомный номер 115. Он был открыт при бомбардировке атомов америция-243 ионами кальция-48. Среди продуктов бомбардировки были четыре атома московия, которые менее чем за 1/10 секунды распались на атомы унтрития.

Название Moscovium используется в качестве заполнителя, например, в научных статьях о поиске Элемента 115; это латинский способ сказать «один-один-пять-ium» («ium» – стандартное окончание для имен элементов). Такие трансурановые элементы всегда производятся искусственно, и обычно их называют в честь ученого.

По своему положению в таблице Менделеева, в группе 15 ниже висмута, этот элемент должен иметь физические свойства тяжелого металла, и он должен иметь два типа химического состава, соответствующие степени окисления M(III) и M(V), причем первое более стабильно.

Приложения

Московиум не имеет никакого известного применения, и о нем мало что известно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *